- Home
- Standard 11
- Mathematics
10-2. Parabola, Ellipse, Hyperbola
normal
An ellipse is inscribed in a circle and a point is inside a circle is choosen at random. If the probability that this point lies outside the ellipse is $\frac {2}{3}$ then eccentricity of ellipse is $\frac{{a\sqrt b }}{c}$ . Where $gcd( a, c) = 1$ and $b$ is square free integer ($b$ is not divisible by square of any integer except $1$ ) then $a · b · c$ is
A
$11$
B
$12$
C
$16$
D
$18$
Solution
Radius of circle $=$ semi-major axis
$p=\frac{\pi\left(a^{2}-a b\right)}{\pi a^{2}}=1-\frac{b}{a}=\frac{2}{3}$
$\Rightarrow \frac{b}{a}=\frac{1}{3}$
$\Rightarrow 1-\frac{b^{2}}{a^{2}}=\frac{8}{9}$
$\Rightarrow \mathrm{e}=\frac{2 \sqrt{2}}{3}$
So, $a \cdot b \cdot c=2 \cdot 2 \cdot 3=12$
Standard 11
Mathematics
Similar Questions
normal